3.11.42 \(\int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx\) [1042]

3.11.42.1 Optimal result
3.11.42.2 Mathematica [A] (verified)
3.11.42.3 Rubi [A] (verified)
3.11.42.4 Maple [A] (verified)
3.11.42.5 Fricas [A] (verification not implemented)
3.11.42.6 Sympy [F(-1)]
3.11.42.7 Maxima [F(-2)]
3.11.42.8 Giac [F]
3.11.42.9 Mupad [B] (verification not implemented)

3.11.42.1 Optimal result

Integrand size = 35, antiderivative size = 200 \[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {i}{7 f (a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}}+\frac {6 \tan (e+f x)}{35 a f (a+i a \tan (e+f x))^{5/2} (c-i c \tan (e+f x))^{5/2}}+\frac {8 \tan (e+f x)}{35 a^2 c f (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}+\frac {16 \tan (e+f x)}{35 a^3 c^2 f \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

output
16/35*tan(f*x+e)/a^3/c^2/f/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(1/ 
2)+1/7*I/f/(a+I*a*tan(f*x+e))^(7/2)/(c-I*c*tan(f*x+e))^(5/2)+6/35*tan(f*x+ 
e)/a/f/(a+I*a*tan(f*x+e))^(5/2)/(c-I*c*tan(f*x+e))^(5/2)+8/35*tan(f*x+e)/a 
^2/c/f/(a+I*a*tan(f*x+e))^(3/2)/(c-I*c*tan(f*x+e))^(3/2)
 
3.11.42.2 Mathematica [A] (verified)

Time = 6.67 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.68 \[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {5-30 i \tan (e+f x)+30 \tan ^2(e+f x)-40 i \tan ^3(e+f x)+40 \tan ^4(e+f x)-16 i \tan ^5(e+f x)+16 \tan ^6(e+f x)}{35 a^3 c^2 f (-i+\tan (e+f x))^3 (i+\tan (e+f x))^2 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

input
Integrate[1/((a + I*a*Tan[e + f*x])^(7/2)*(c - I*c*Tan[e + f*x])^(5/2)),x]
 
output
(5 - (30*I)*Tan[e + f*x] + 30*Tan[e + f*x]^2 - (40*I)*Tan[e + f*x]^3 + 40* 
Tan[e + f*x]^4 - (16*I)*Tan[e + f*x]^5 + 16*Tan[e + f*x]^6)/(35*a^3*c^2*f* 
(-I + Tan[e + f*x])^3*(I + Tan[e + f*x])^2*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt 
[c - I*c*Tan[e + f*x]])
 
3.11.42.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.11, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {3042, 4006, 55, 42, 42, 41}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 4006

\(\displaystyle \frac {a c \int \frac {1}{(i \tan (e+f x) a+a)^{9/2} (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 55

\(\displaystyle \frac {a c \left (\frac {6 \int \frac {1}{(i \tan (e+f x) a+a)^{7/2} (c-i c \tan (e+f x))^{7/2}}d\tan (e+f x)}{7 a}+\frac {i}{7 a c (a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 42

\(\displaystyle \frac {a c \left (\frac {6 \left (\frac {4 \int \frac {1}{(i \tan (e+f x) a+a)^{5/2} (c-i c \tan (e+f x))^{5/2}}d\tan (e+f x)}{5 a c}+\frac {\tan (e+f x)}{5 a c (a+i a \tan (e+f x))^{5/2} (c-i c \tan (e+f x))^{5/2}}\right )}{7 a}+\frac {i}{7 a c (a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 42

\(\displaystyle \frac {a c \left (\frac {6 \left (\frac {4 \left (\frac {2 \int \frac {1}{(i \tan (e+f x) a+a)^{3/2} (c-i c \tan (e+f x))^{3/2}}d\tan (e+f x)}{3 a c}+\frac {\tan (e+f x)}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}\right )}{5 a c}+\frac {\tan (e+f x)}{5 a c (a+i a \tan (e+f x))^{5/2} (c-i c \tan (e+f x))^{5/2}}\right )}{7 a}+\frac {i}{7 a c (a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

\(\Big \downarrow \) 41

\(\displaystyle \frac {a c \left (\frac {6 \left (\frac {4 \left (\frac {2 \tan (e+f x)}{3 a^2 c^2 \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}+\frac {\tan (e+f x)}{3 a c (a+i a \tan (e+f x))^{3/2} (c-i c \tan (e+f x))^{3/2}}\right )}{5 a c}+\frac {\tan (e+f x)}{5 a c (a+i a \tan (e+f x))^{5/2} (c-i c \tan (e+f x))^{5/2}}\right )}{7 a}+\frac {i}{7 a c (a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}}\right )}{f}\)

input
Int[1/((a + I*a*Tan[e + f*x])^(7/2)*(c - I*c*Tan[e + f*x])^(5/2)),x]
 
output
(a*c*((I/7)/(a*c*(a + I*a*Tan[e + f*x])^(7/2)*(c - I*c*Tan[e + f*x])^(5/2) 
) + (6*(Tan[e + f*x]/(5*a*c*(a + I*a*Tan[e + f*x])^(5/2)*(c - I*c*Tan[e + 
f*x])^(5/2)) + (4*(Tan[e + f*x]/(3*a*c*(a + I*a*Tan[e + f*x])^(3/2)*(c - I 
*c*Tan[e + f*x])^(3/2)) + (2*Tan[e + f*x])/(3*a^2*c^2*Sqrt[a + I*a*Tan[e + 
 f*x]]*Sqrt[c - I*c*Tan[e + f*x]])))/(5*a*c)))/(7*a)))/f
 

3.11.42.3.1 Defintions of rubi rules used

rule 41
Int[1/(((a_) + (b_.)*(x_))^(3/2)*((c_) + (d_.)*(x_))^(3/2)), x_Symbol] :> S 
imp[x/(a*c*Sqrt[a + b*x]*Sqrt[c + d*x]), x] /; FreeQ[{a, b, c, d}, x] && Eq 
Q[b*c + a*d, 0]
 

rule 42
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(- 
x)*(a + b*x)^(m + 1)*((c + d*x)^(m + 1)/(2*a*c*(m + 1))), x] + Simp[(2*m + 
3)/(2*a*c*(m + 1))   Int[(a + b*x)^(m + 1)*(c + d*x)^(m + 1), x], x] /; Fre 
eQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && ILtQ[m + 3/2, 0]
 

rule 55
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(S 
implify[m + n + 2]/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^Simplify[m + 1]*( 
c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && ILtQ[Simplify[m + n + 
 2], 0] && NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[ 
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (SumSimplerQ[m, 1] ||  !SumSimp 
lerQ[n, 1])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4006
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(c/f)   Subst[Int[(a + b*x)^(m - 1)*( 
c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]
 
3.11.42.4 Maple [A] (verified)

Time = 0.84 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.76

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (16 i \left (\tan ^{7}\left (f x +e \right )\right )-16 \left (\tan ^{8}\left (f x +e \right )\right )+56 i \left (\tan ^{5}\left (f x +e \right )\right )-56 \left (\tan ^{6}\left (f x +e \right )\right )+70 i \left (\tan ^{3}\left (f x +e \right )\right )-70 \left (\tan ^{4}\left (f x +e \right )\right )+30 i \tan \left (f x +e \right )-35 \left (\tan ^{2}\left (f x +e \right )\right )-5\right )}{35 f \,a^{4} c^{3} \left (-\tan \left (f x +e \right )+i\right )^{5} \left (\tan \left (f x +e \right )+i\right )^{4}}\) \(151\)
default \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (16 i \left (\tan ^{7}\left (f x +e \right )\right )-16 \left (\tan ^{8}\left (f x +e \right )\right )+56 i \left (\tan ^{5}\left (f x +e \right )\right )-56 \left (\tan ^{6}\left (f x +e \right )\right )+70 i \left (\tan ^{3}\left (f x +e \right )\right )-70 \left (\tan ^{4}\left (f x +e \right )\right )+30 i \tan \left (f x +e \right )-35 \left (\tan ^{2}\left (f x +e \right )\right )-5\right )}{35 f \,a^{4} c^{3} \left (-\tan \left (f x +e \right )+i\right )^{5} \left (\tan \left (f x +e \right )+i\right )^{4}}\) \(151\)

input
int(1/(a+I*a*tan(f*x+e))^(7/2)/(c-I*c*tan(f*x+e))^(5/2),x,method=_RETURNVE 
RBOSE)
 
output
1/35/f*(a*(1+I*tan(f*x+e)))^(1/2)*(-c*(I*tan(f*x+e)-1))^(1/2)/a^4/c^3*(16* 
I*tan(f*x+e)^7-16*tan(f*x+e)^8+56*I*tan(f*x+e)^5-56*tan(f*x+e)^6+70*I*tan( 
f*x+e)^3-70*tan(f*x+e)^4+30*I*tan(f*x+e)-35*tan(f*x+e)^2-5)/(-tan(f*x+e)+I 
)^5/(tan(f*x+e)+I)^4
 
3.11.42.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.78 \[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {\sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (-7 i \, e^{\left (14 i \, f x + 14 i \, e\right )} - 77 i \, e^{\left (12 i \, f x + 12 i \, e\right )} - 595 i \, e^{\left (10 i \, f x + 10 i \, e\right )} - 320 i \, e^{\left (9 i \, f x + 9 i \, e\right )} + 175 i \, e^{\left (8 i \, f x + 8 i \, e\right )} - 320 i \, e^{\left (7 i \, f x + 7 i \, e\right )} + 875 i \, e^{\left (6 i \, f x + 6 i \, e\right )} + 217 i \, e^{\left (4 i \, f x + 4 i \, e\right )} + 47 i \, e^{\left (2 i \, f x + 2 i \, e\right )} + 5 i\right )} e^{\left (-7 i \, f x - 7 i \, e\right )}}{2240 \, a^{4} c^{3} f} \]

input
integrate(1/(a+I*a*tan(f*x+e))^(7/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm 
="fricas")
 
output
1/2240*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) 
*(-7*I*e^(14*I*f*x + 14*I*e) - 77*I*e^(12*I*f*x + 12*I*e) - 595*I*e^(10*I* 
f*x + 10*I*e) - 320*I*e^(9*I*f*x + 9*I*e) + 175*I*e^(8*I*f*x + 8*I*e) - 32 
0*I*e^(7*I*f*x + 7*I*e) + 875*I*e^(6*I*f*x + 6*I*e) + 217*I*e^(4*I*f*x + 4 
*I*e) + 47*I*e^(2*I*f*x + 2*I*e) + 5*I)*e^(-7*I*f*x - 7*I*e)/(a^4*c^3*f)
 
3.11.42.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(1/(a+I*a*tan(f*x+e))**(7/2)/(c-I*c*tan(f*x+e))**(5/2),x)
 
output
Timed out
 
3.11.42.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(1/(a+I*a*tan(f*x+e))^(7/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm 
="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.11.42.8 Giac [F]

\[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\int { \frac {1}{{\left (i \, a \tan \left (f x + e\right ) + a\right )}^{\frac {7}{2}} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(1/(a+I*a*tan(f*x+e))^(7/2)/(c-I*c*tan(f*x+e))^(5/2),x, algorithm 
="giac")
 
output
integrate(1/((I*a*tan(f*x + e) + a)^(7/2)*(-I*c*tan(f*x + e) + c)^(5/2)), 
x)
 
3.11.42.9 Mupad [B] (verification not implemented)

Time = 7.41 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.93 \[ \int \frac {1}{(a+i a \tan (e+f x))^{7/2} (c-i c \tan (e+f x))^{5/2}} \, dx=\frac {\sqrt {\frac {a\,\left (\cos \left (2\,e+2\,f\,x\right )+1+\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}\,\left (\cos \left (2\,e+2\,f\,x\right )\,630{}\mathrm {i}+\cos \left (4\,e+4\,f\,x\right )\,168{}\mathrm {i}+\cos \left (6\,e+6\,f\,x\right )\,42{}\mathrm {i}+\cos \left (8\,e+8\,f\,x\right )\,5{}\mathrm {i}+770\,\sin \left (2\,e+2\,f\,x\right )+182\,\sin \left (4\,e+4\,f\,x\right )+42\,\sin \left (6\,e+6\,f\,x\right )+5\,\sin \left (8\,e+8\,f\,x\right )-525{}\mathrm {i}\right )}{2240\,a^4\,c^2\,f\,\sqrt {\frac {c\,\left (\cos \left (2\,e+2\,f\,x\right )+1-\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}} \]

input
int(1/((a + a*tan(e + f*x)*1i)^(7/2)*(c - c*tan(e + f*x)*1i)^(5/2)),x)
 
output
(((a*(cos(2*e + 2*f*x) + sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1)) 
^(1/2)*(cos(2*e + 2*f*x)*630i + cos(4*e + 4*f*x)*168i + cos(6*e + 6*f*x)*4 
2i + cos(8*e + 8*f*x)*5i + 770*sin(2*e + 2*f*x) + 182*sin(4*e + 4*f*x) + 4 
2*sin(6*e + 6*f*x) + 5*sin(8*e + 8*f*x) - 525i))/(2240*a^4*c^2*f*((c*(cos( 
2*e + 2*f*x) - sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1))^(1/2))